NRC Research Associate Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  sign inOpen Printer View

Opportunity at National Institute of Standards and Technology (NIST)

Thermoelectric, Battery, and other Energy Conversion Materials

Location

Material Measurement Laboratory, Materials Measurement Science Division

RO# Location
50.64.31.B6767 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

name email phone
Wong-Ng, Winnie Kwai-Wah winnie.wong-ng@nist.gov 301.975.5791

Description

The energy crisis has spurred intensive research activities in energy conversion and storage materials. For example, recent improvements in thermoelectric conversion efficiency have made thermoelectric materials attractive to the automotive industry for waste heat recovery applications, as well as in the environmental area for reliable solid-state refrigeration. Batteries have experienced fast-growing interest driven by new demands from a wide spectrum of applications. Specific research opportunities include (1) crystal structure and property relationships and measurements of novel thermoelectric and battery materials (Seebeeck coefficient, electrical resistivity, and thermal conductivity for thermoelectrics, and ionic conductivity for solid-state battery materials), (2) development of standard reference materials for battery material measurements, (3) deposition of combinatorial thin film libraries using a state-of-the-art sputtering/pulsed laser tool, (4) utilization of NIST first-in-world high-throughput techniques for mapping Seebeck coefficient and electricity resistivity for thermoelectrics. Plans are being developed for mapping ionic conductivity of solid-state electrolytes for battery applications, (5) understanding of battery degradation mechanisms. The thermoelectric and battery materials of interest include thin films, single crystals, and bulk materials. Opportunities also exist to investigate other materials and develop additional high-throughput methods for photovoltaics and photocatalysis for sustainable energy applications.

 

Keywords:
Solid-state batteries; Thermoelectric materials; Energy conversion materials; Combinatorial methods; Photocatalysis; Photovoltaics; Sustainable energy; Thin films and multilayer structures

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants

Stipend

Base Stipend Travel Allotment Supplementation
$74,950.00 $3,000.00
Copyright © 2022. National Academy of Sciences. All rights reserved.Terms of Use and Privacy Policy