RO# |
Location |
|
13.40.01.B7444 |
Kirtland Air Force Base, NM 871175776 |
name |
email |
phone |
|
Khanh Dai Pham |
khanh.pham.1@spaceforce.mil |
505.846.4823 |
Satellite communications (SATCOM) with enhancements of radio interference mitigation, low probability of interception (LPI), and low probability of detection (LPD) can improve multi-user access, bit-error-rate performance, and throughput efficiency during congested and contested radio environments. Research opportunities exist to explore the use of game-theoretic approaches to physical, medium access control, and network layers of satellite user terminals and ground hub system controllers that are desired to be radio interference resistance, LPI, LPD, and low cost in anti-access and area-denial radio environments. Specifically, related endeavors using game-theoretic frameworks include the development of ground hub system controllers and user terminals corresponding to dynamic resource and link margin assignments, to which dynamic multi-agent interactions among user terminals, ground hub system controllers, and adversarial actors are optimized for burst carrier frequencies, bandwidths, durations, and repetition intervals. With regard to control-theoretic approaches, additional emphases may also be placed on open-loop forward link time synchronization, closed-loop return link time synchronization to align both time and phase scales of ground hubs, satellite transponders and user terminals in presence of filter delays, phase delays and phase noises, frequency drifts by local oscillators, and amplitude modulation and phase modulation effects.
References
Wang Q, Nguyen T, Pham K, Kwon H: “Mitigating Jamming Attack: A Game-Theoretic Perspective”. IEEE Military Communications, 2017
Shen D, Shu Z, Tian X, Chen G, Pham K: “A Game-Theoretic DRA Approach for Improved Spread Spectrum Frequency Hopped Waveforms Performance in the Presence of Smart Jammers”. IEEE Cognitive Communications for Aerospace Applications Workshop, Cleveland, OH, 2017
Hannon M, Feng S, Kwon HM, Pham KD: “Jamming Statistics-Dependent Frequency Hopping”. IEEE Military Communications Conference, Baltimore, MD, 2016
Tian X, Tian Z, Pham K, Blasch E, Shen D: Jamming/Anti-jamming Game with a Cognitive Jammer in Space Communication. Proceedings of SPIE 8385, Sensors and Systems for Space Applications V, 2012
Satellite communications; User terminals; Ground hub system controllers; Low probability of interception; Low probability of detection; Radio interference mitigation; Dynamic resource allocation; Link margin assignment; Multi-agent interactions; Online learning; Open-loop forward link time synchronization; Closed-loop return link time synchronization; Filter delays; Phase delays; Phase noises; Frequency drifts; Local oscillators;