The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InOpen Printer View

Opportunity at National Institute of Standards and Technology (NIST)

Deep Learning Applied to Problems in Chemical Physics

Location

Information Technology Laboratory, Applied and Computational Mathematics Division

RO# Location
50.77.11.C0578 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Schneider, Barry I bis@nist.gov 301.975.4685

Description

A small group of scientists in the Information Technology and Materials Research Laboratories have been been applying neural networks to examining a number of problems in chemical physics. One problem, the Kovats retention indices used in gas chromatography, has already been successfully attacked using these approaches (Predicting Kov\'{a}ts Retention Indices Using Graph Neural Networks ). We have achieved an almost fourfold increase in predicitive capabilities of our model based on graph neural networks over previous atom additivity approaches. We are eager to extend these ideas more broadly to predicting mass specta, and the positions and intesities of IR spectral lines. The work has immediate application to the identification of unknown compounds of interest to the larger industrial community. 

References

Chen Qu, Barry I. Schneider, Anthony J. Kearsley, Walid Keyrouz and Thomas C. Allison, Predicting Kov\'{a}ts Retention Indices Using Graph Neural Networks Journal of Chromatogaphy A

Keywords:
artificial intelligence; deep learning; mass spectra; collisions; IR spectra; gas chromatography

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants

Stipend

Base Stipend Travel Allotment Supplementation
$72,750.00 $3,000.00
Copyright © 2019. National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Policy