Policy and Global Affairs, Fellowships OfficeThe National Academies Logo

RAP Lab Opportunities at NIST

  Sign In Printable View

Opportunity at National Institute of Standards and Technology (NIST)

Spin Electronics

Location

Physical Measurement Laboratory, Electromagnetics Division

RO# Location
50.68.72.B6412 Boulder, CO

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Pufall, Matthew Read pufall@boulder.nist.gov 303.497.5206
Rippard, William H. rippard@boulder.nist.gov 303.497.3882

Description

Until recently, the only means known to control the magnetization state of ferromagnetic structures was through the use of applied magnetic fields. However, within the last several years it has been demonstrated that this can also be accomplished through the transfer of the electron spin angular momentum from current-carrying electrons or pure spin currents to the magnetization of magnetic films, generally referred to as the spin transfer effects. Spin transfer represents a fundamentally new way to control and manipulate the magnetic states of devices, and allows hysteretic switching and coherent microwave dynamics to be excited in magnetic nanostructures utilizing a DC current passed either through the device or a proximate line. This project seeks both to understand the fundamental characteristics of the interaction between spin polarized currents and magnetic materials, and also to examine the suitability of such nanoscale devices for microwave electronics. We are specifically pursuing research in (1) increasing output power from nanoscale oscillators through materials engineering and incorporating tunnel junctions into the device structures, (2) understanding the interactions between mutually synchronized nanoscale oscillators in order to develop device arrays, (3) characterizing and understanding the thermal contributions to both oscillator linewidths and the current induced switching distributions in patterned elements, (4) understanding the interactions between individual magnetic nanostructures and AC fields and AC currents, (5) investigating the current-induced switching properties of patterned magnetic nanostructures for magnetic random-access memory applications, and (6) understanding spin-orbit interactions and spin-current generation.

Keywords:
Magnetism; Magnetodynamics; Microwave circuitry; Nanotechnology; Spin electronics; Spintronics;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Regular applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.