The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Discrete Photon Detection

Location

Physical Measurement Laboratory, Sensor Science Division

RO# Location
50.68.51.C0070 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Levine, Zachary H. zlevine@nist.gov 301.975.5453
Migdall, Alan Lee migdall@nist.gov 301.975.2331

Description

Within the last few years, detectors such as superconducting transition edge sensors capable of spanning the single photon regime to millions of photons have become available. The issue is how to calibrate the response of these detectors. When individual photon number pulses can be resolved, the problem is relatively straightforward and can be regarded as solved. This covers the range from 1 to 20 photons per pulse. When the pulses have thousands of photons, the shot noise of the pulse is dominated by the noise of the detector and again the problem becomes straightforward. In between, the intrinsic noise of the detector is less than the shot noise of the pulses, yet individual detected numbers of photons cannot be distinguished. Characterizing such systems in an unambiguous way is not a solved problem.

A related problem occurs in the case of photon detection on a superconducting nanowire. Here, the intent is to make time-resolved measurements based on the arrival time of pulses at the two ends of the wire. Complications can arise such as when a second pulse arrives before the first is detected. Characterizing such detectors is at the heart of the project.

 

Keywords:
Single-photon detection; Many-photon detection; PIKA; Superconducting nanowire;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.