The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Actinic Optical Dimensional Characterization of Deep-Subwavelength Nanostructures

Location

Physical Measurement Laboratory, Engineering Physics Division

RO# Location
50.68.31.B8479 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Barnes, Bryan Michael bryan.barnes@nist.gov 301.975.3947

Description

This research opportunity centers on the development of novel optical methods for nanoscale dimensional measurements using the NIST 193 nm Microscope: a newly upgraded, custom-built, world-class high-magnification optical imaging platform optimized for this actinic, deep ultraviolet (DUV) wavelength. It has been built as the ultimate imaging testbed for the quantitative optical measurement of nanospheres and sub-20 nm wide patterned features. Our working group supports US Semiconductor Manufacturing in overcoming various qualitative and quantitative measurement challenges especially over large areas, as is needed for effective manufacturing process control of products that incorporate billions of nanoscale features.

Recent publications report our scatterfield microscopy techniques in which extensive electromagnetic modeling, instrument characterization, and data acquisition techniques are combined to extract nanoscale dimensional information well below conventional diffraction limits. These measurements are optimized by tailoring the illumination so as to yield dimensionally sensitive 3-D electromagnetic scattering from features of interest. Successful applicants would join in our ongoing efforts to extend these methods into practical applications in the DUV, as well as developing new alternative approaches for advancing nanoscale feature inspection and characterization using this unique optical instrument.

 

References

Qin J, et al: "Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization." Light-Science and Applications 5: el 60389, 2016. http://dx.doi.org/10.1038/Isa.2016.38

Henn MA, et al: "Optimizing the nanoscale quantitative optical imaging of subfield scattering targets." Optics Letters 41(21): 4959-4962, 2016. http://dx.doi.org/10.1364/OL.41.004959

Barnes BM, et al: "Three-dimensional deep sub-wavelength defect detection using l=193 nm optical microscopy." Optics Express 21(22): 26219-26226, 2013. http://dx.doi.org/10.1364/Oe.21.026219

 

Keywords:
Optics; Semiconductors; Ultraviolet; Electromagnetic simulations; Lasers; Nanoscale; Computational microscopy; Dimensional metrology; Optical imaging;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.