The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Uncertainty Analysis for Machine Learning and Optimization Applications

Location

Material Measurement Laboratory, Chemical Sciences Division

RO# Location
50.64.61.C0098 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Sheen, David Allan david.sheen@nist.gov 301.975.2603

Description

Computational tools for analysis and model development have been widely used in many applications, but the predictions of these models are not complete without an estimate of the uncertainty in those predictions. With uncertainty analysis, the model predictions are made more robust and reliable. This project seeks to understand and develop techniques for uncertainty analysis in machine learning and advanced optimization for fields including precision medicine, biomanufacturing, omics research, and kinetic model development. Techniques for uncertainty estimation will range from non-parametric methods such as bootstrapping to fully Bayesian analysis.

W. F. C. Rocha, D. A. Sheen, SAR and QSAR in Environmental Research  (2016), 799-811.

D. A. Sheen, W. F. C. Rocha, K. A. Lippa, D. W. Bearden, Chemometrics and Intelligent Laboratory Systems 162 (2017), 10-20.

Keywords:
Machine learning; Outlier detection; Optimization; Informatics; Chemometrics; Metabolomics; Bayesian analysis; Uncertainty analysis; Uncertainty quantification

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.