The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Quantitative Spectroscopic Measurements for Climate Science Applications

Location

Material Measurement Laboratory, Chemical Sciences Division

RO# Location
50.64.61.B1641 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Chu, Pamela M. pamela.chu@nist.gov 301.975.2988
Hodges, Joseph Terence jhodges@nist.gov 301.975.2605
VanZee, Roger Dale roger.vanzee@nist.gov 301.975.2363

Description

This research focuses on advanced spectroscopic techniques for quantitative analysis of light-matter interaction in the Earth's atmosphere with an emphasis on greenhouse-gas and atmospheric-aerosol monitoring applications. Research opportunities include the development and application of high-accuracy, ultrasensitive cavity-enhanced methods with visible and infrared diode lasers, optical frequency combs and broadband sources. A major goal of this work is to provide quality-assured techniques and spectroscopic reference data to support climate change science.  This research aims to improve radiative models and field and remote-sensing measurements of atmospheric gases such as O2, CO2, CH4, and water vapor. For example, we are conducting cavity ring-down absorption spectroscopy (CRDS) and photoacoustic spectroscopy (PAS) of rotationally resolved cavity ring-down absorption measurements of H2O, O2, and CO2, to enable SI traceability of ground and satellite measurements of greenhouse gases in terms of high-accuracy line parameter data. Another goal is to characterize the radiative properties of natural and anthropogenic atmospheric aerosols and particulate matter including soot, secondary organics, and inorganic particulate matter.  To this end we combine the CRDS and PAS methods with aerosol generation and particle counting techniques to measure the extinction, absorption, and albedo of complex heterogeneous aerosol mixtures which are relevant to understanding and predicting climate change.

 

 

Keywords:
Infrared laser spectroscopy; Trace gases; Greenhouse gas remote sensing and monitoring; Atmospheric aerosols

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.