The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Mathematical Models for Characterizing Pluripotent Stem Cell Populations

Location

Material Measurement Laboratory, Biosystems and Biomaterials Division

RO# Location
50.64.41.B8169 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Halter, Michael michael.halter@nist.gov 301.461.0956
Plant, Anne L. anne.plant@nist.gov 301.975.3124

Description

Time-lapse microscopy of living cells allows the quantification of changes in gene promoter activity by following the intensity of fluorescent proteins in individual cells over time. Stem cell populations can be highly heterogeneous and can exhibit complex responses. Using quantitative imaging data on large numbers of live cells over time, we can construct potential landscapes for promoter activity based on steady state population distributions and measures of fluctuations in individual cells.  We have previously applied Langevin/Fokker Planck equations to predict rates of relaxation in cell populations. We have shown that such data can provide information about symmetric and asymmetric inheritance and allow prediction of rates of cell state change. We are extending this work to consider multidimensional landscapes. The goal of this research project is to develop models that can be used to evaluate the stability and predict transitions as cell populations progress from pluripotent to differentiated states.  This project involves a team working in live cell imaging, data analysis, and probabilistic model development.

References

Sisan D.R., et al. (2012) Predicting rates of cell state change due to stochastic fluctuations using a data-driven landscape model. PNAS 109, 19262-19267

Bhadriraju K, et al: “Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies.” Stem Cell Research (17): 122-129, 2016

Keywords:
Stochastic fluctuations; Gene expression; Fluorescence protein reporters; Single cell analysis; Stem cell; Pluripotency; Differentiation; Fluorescence microscopy; Probabilistic models

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.