The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

In-situ Metrologies for Multifunctional Composites, Textiles, and Elastomers


Material Measurement Laboratory, Materials Measurement Science Division

RO# Location
50.64.31.B8486 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.


Name E-mail Phone
Forster, Aaron M. 301.975.8701


Nanomaterials such as carbon nanotubes, graphene, and nanocellulose are a route to improve strength, and impart multifunctional capabilities (sensing, actuation, processing) to traditional engineering polymers. There are several examples where these advanced composites have significantly impacted design. Conductive composites facilitate out-of-autoclave curing and thermoforming composites manufacturing processes to reduce energy costs. Conductive composites facilitate in-situ strain and damage sensing for asset management. Conductive composites have led to synthetic muscles and skin for biomimetic devices and safer autonomous robots. Often the measurement science to characterize structure-property relationships lags behind the initial innovation. The objective of this project is to connect nanomaterial structure, interface chemistry, dispersion/alignment to composite performance. We are interested in candidates with expertise in spectroscopic (Raman and fluorescence) imaging techniques for stress transfer, mechanical measurements across rate and length scales (molecular to bulk), modeling composite properties, and the response of these composites to electromagnetic radiation. This understanding will develop next generation non-destructive metrologies for evaluating the multifunctional performance of these composites.


Raman spectroscopy; Durability; Fluorescence; Mechanical properties; Electrical conductivity; Nanocomposites; Percolated networks; Carbon nanotubes; Graphene; Nanocellulose; Non-destructive imaging; Nanoindentation; Fracture; Structural health monitoring;


Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.