The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Polymers Additive Manufacturing and Rheology

Location

Material Measurement Laboratory, Materials Science and Engineering Division

RO# Location
50.64.21.B8484 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Beers, Kathryn L. kathryn.beers@nist.gov 301.975.2113
DeLongchamp, Dean M. dean.delongchamp@nist.gov 301.975.5599
Kline, R Joseph joe.kline@nist.gov 301.975.4356
Migler, Kalman kalman.migler@nist.gov 301.975.4876
Seppala, Jonathan E jonseppala@nist.gov (301) 975-2836

Description

Additive manufacturing (3D printing) is a process for fabricating parts directly from 3-D digital models which has tremendous potential for producing high-value, complex, individually customized parts. Companies across the globe are using AM to reduce time-to-market, improve product quality, and reduce the cost to manufacture products. Polymers are attractive materials in this regard because they are economical, they provide for a large range of properties, and they are amenable to many low energy fabrication technologies. In the industrial sector, polymers are being used in a wide range of part applications including aerospace, defense, automotive, sports, telecommunications, and medical devices.

While the use of polymeric materials for AM has been growing, challenges impede its more widespread adoption and commercialization. In many cases, new measurement methods, standards, data, and models are needed to overcome these challenges. We are interested in the rheological, chemical, mechanical, and processing aspects of additive manufacturing because their critical importance to producing strong and reproducible parts.

In the Materials Science and Engineering Division, opportunities include (1) development of in-situ x-ray measurements to measure the crystallization kinetics during polymers extrusion additive manufacturing (also called fused deposition modelling) and (2) measurements of gelation and solidification kinetics during photopolymerization (stereolithography) using the newly developed rheo-Raman microscope.

Further research areas are available in the use of Raman Microscopy to measure alignment of extruded strands. These are described under a separate posting listed for NRC advisor Hight Walker, Angela.

 

Keywords:
Polymers; Semi-crystalline polymers; Polymer processing-structure relationships; Rheology; X-ray scattering; Fused Deposition Modelling; FDM; Stereolithography; SLA; 3D printing; 3-D printing;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.