The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Microstructure Evolution Models for Optimizing Metals Additive Manufacturing

Location

Material Measurement Laboratory, Materials Science and Engineering Division

RO# Location
50.64.21.B8063 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Campbell, Carelyn E. carelyn.campbell@nist.gov 301.975.4920
Lass, Eric Andrew eric.lass@nist.gov 301.975.2080
Levine, Lyle Edward lyle.levine@nist.gov 301.975.6032
Stoudt, Mark R. mark.stoudt@nist.gov 301.975.6025

Description

Additive manufacturing (AM) of metallic alloys produces extreme heating and cooling cycles that result in unexpected microstructures and phases.  This research will integrate a variety of modeling tools across multiple time and length scales to predict the microstructure evolution during the AM build process and post build thermal-mechanical processing.  Some of these modeling tools include density functional theory (DFT), CALPHAD-based models, phase-field models, and finite-element models (FEM) to predict as-built microsegregation, post-processing homogenization, precipitation, and stress-relaxation. DFT simulations will be used to provide inputs needed for precipitation simulations. This modeling will rely on a range of characterization techniques to determine processing-structure-property relations that occur during processing, including scanning and transmission electron microscopy, thermal analysis, and x-ray diffraction techniques.   Developed models will be used to optimize processing and conventional alloy compositions for additive manufacturing. 

T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, L.E. Levine, Acta Mater., 139 (2017) 244-253.

Keywords:
Additive manufacturing; Metals; Phase transformations; CALPHAD; DFT; Computational thermodynamics; Multicomponent diffusion; Solidification; Microscopy; Diffraction; Alloy Optimization

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.