The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Magnetic Nanoparticles for Biomedical Applications

Location

Material Measurement Laboratory, Materials Science and Engineering Division

RO# Location
50.64.21.B6958 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.

Advisers

Name E-mail Phone
Dennis, Cindi L. cindi.dennis@nist.gov 301.975.6041

Description

In recent years, there have been significant efforts to develop magnetic nanoparticles for biomedical applications. This has included work in magnetic resonance imaging (MRI), hyperthermia for cancer and arthritis treatment, and drug delivery. However, the fundamental characterization methods for magnetic nanoparticles-both individually and collectively-as well as some of the important application parameters (i.e., T1 and T2 times in imaging and heat output in hyperthermia) have lagged behind. This research area investigates the properties of magnetic nanoparticles-both individually and collectively-like saturation magnetization, coercivity, exchange bias field, anisotropy, surface spin canting, and blocking temperature. In addition, since every nanoparticle produced is not identical, it also utilizes new techniques like First Order Reversal Curves (FORC) to characterize the distributions in these properties. A variety of experimental equipment is used, including superconducting quantum interference device (SQUID) magnetometers, vibrating sample magnetometers (VSM), SQUID VSM, Mössbauer spectroscopy, ferromagnetic resonance, x-ray diffraction, electron microscopy, and small-angle neutron scattering. Concurrently, another research area focuses on developing methods to quantify the primary characteristic for a particular application, including but not limited to a microcalorimeter to quantify heat output for hyperthermia, and T1 and T2 standard reference materials for MRI.

 

Keywords:
Biomedicine; Drug delivery; Hyperthermia; Magnetic nanoparticles; Magnetic property distributions; Magnetic resonance imaging; Nanomedicine; Superparamagnetism;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.