The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - NIST

  Sign InPrintable View

Opportunity at National Institute of Standards and Technology (NIST)

Quantum and Classical Light-Matter Interactions in Nanophotonic Devices


Center for Nanoscale Science & Technology , Center for Nanoscale Science and Technology

RO# Location
50.62.01.B7487 Gaithersburg, MD

Please note: This Agency only participates in the February and August reviews.


Name E-mail Phone
Srinivasan, Kartik 301.975.5938


Nanofabrication technology can be used to create chip-based optical resonators in which light is confined to wavelength-scale dimensions for thousands of optical cycles. The resulting large per photon intracavity field strength and long photon storage time, in combination with the device scalability and integration afforded by modern fabrication methods, provides several opportunities for applications in quantum and classical information processing, sensing, and metrology. We are working on multiple projects in characterizing light-matter interactions in chip-based nanophotonic structures in both the quantum and classical regimes.  These light-matter interactions include the coupling of single quantum emitters with confined optical fields, the enhancement of parametric nonlinear optical processes, and the manipulation of acousto-optic interactions in systems with engineered optical and mechanical modes.  

In the quantum regime, one research project is in the development of single quantum dot nanophotonic and nanomechanical devices.  These quantum dots provide access to single-photon emission and, when strongly-coupled to an optical field, also provide access to single-photon-level nonlinearities.  A second research project is in the development of entangled photon pair sources based on spontaneous four-wave-mixing in nanophotonic resonators.  A third project is in the development of on-chip devices that enable manipulation of the spectro-temporal characteristics of quantum light generated by nanophotonic systems (e.g, the quantum dot single-photon sources and microresonator photon pair sources described above).  Such manipulation includes quantum frequency conversion - the mapping of a quantum state of light from wavelength band to the other - and approaches to arbitrarily manipulate the quantum state's temporal profile.  

In the classical regime, we are utilizing parametric nonlinear optical processes to develop microresonator frequency comb devices that may enable time and frequency metrology outside of a laboratory environment.  These projects involve a number of NIST, university, and industry collaborators in efforts to create portable optical atomic clocks and optical frequency synthesizers.  We are also developing piezoelectric cavity optomechanical systems for projects in sensing and signal transduction, including an effort to create efficient interfaces between the microwave and optical domains.  

All projects involve the development of new measurement tools by which the light-matter interactions can be characterized and utilized, and fabrication of devices in the state-of-the-art NIST Gaithersburg NanoFab. They also involve the opportunity for significant collaboration with other scientists and engineers within NIST, on both the Gaithersburg and Boulder campuses. 


Nanophotonics; Quantum optics; Quantum dots; Quantum information processing; Optical metrology; Nanotechnology;


Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.