The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - AFRL

  Sign InPrintable View

Opportunity at Air Force Research Laboratory (AFRL)

Resilient System Controllers for Wideband Global SATCOM

Location

Space Vehicles Directorate, RV/Space and Planetary Sciences

RO# Location
13.40.01.B7908 Kirtland Air Force Base, NM 871175776

Advisers

Name E-mail Phone
Pham, Khanh Dai khanh.pham.1@us.af.mil 505.846.4823

Description

The increasing demand for beyond-line-of-sight and in-transit space communications is leading to an emerging growth for secure and resilient communications. Specifically, handling efficiently jamming resistance, low probability of interception, low probability of detection, etc. is essential for future capability enhancements expected from Wideband Global SATCOM (WGS). In this research opportunity, modeling, simulation and analysis associated with ground hub satellite system controllers are being investigated to account for (1) dynamic resource allocation enabled by competitive decision-making frameworks for radio resources and link margin assignments that can best respond for airborne and/or ground terminals in presence of radio interferences and in accordance of channel-state information feedback and (2) forward and return link multiple accesses supported by universal modulation and demodulation techniques together with frequency-time burst approaches to transport existing WGS waveforms through contested environments.

 

References

Shen D, Shu Z, Tian X, Chen G, Pham K: “A Game-Theoretic DRA Approach for Improved Spread Spectrum Frequency Hopped Waveforms Performance in the Presence of Smart Jammers”. IEEE Cognitive Communications for Aerospace Applications Workshop, Cleveland, OH, 2017

Lu J, Li L, Blasch E, Pham K, Shen D, Chen G: “Dynamic Multi-Arm Bandit Game based Multi-Agent Spectrum Sharing Strategy Design”. IEEE/AIAA 36th Digital Avionics Systems Conference, St. Petersburg, FL, 2017

Tian X, Chen G, Pham KD, Blasch E: “Joint Transmission Power Control in Transponded SATCOM Systems”. IEEE Military Communications Conference, Baltimore, MD, 2016

 

Keywords:
WGS SATCOM; Dynamic resource allocation; System controllers; Airborne and/or ground terminals; Low probability of interception; Low probability of detection; Radio interferences; Dynamic resource allocation decision processing; Link margin assignment; Forward and return multiple access; Frequency-time burst; WGS waveforms;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral and Senior applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.