The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - AFRL

  Sign InPrintable View

Opportunity at Air Force Research Laboratory (AFRL)

Blind and Beacon-Less TDMA Scheduling for Ad-Hoc LEO Satellite Communications

Location

Space Vehicles Directorate, RV/Space and Planetary Sciences

RO# Location
13.40.01.B7835 Kirtland Air Force Base, NM 871175776

Advisers

Name E-mail Phone
Pham, Khanh Dai khanh.pham.1@us.af.mil 505.846.4823

Description

Future satellite missions require radio-frequency (RF) subsystem architectures with low size, weight, and power (SWAP) that can support remotely piloted aircraft (RPA)’s high data rates at the order of Gbps for both uplinks and downlinks. To meet the ever-increasing demands of high data rates, the most commonly used technology in RPA communications is often to be dual polarization in conjunction with time division multiple access (TDMA) and a constellation of Low-Earth-Orbiting (LEO) satellites. Currently, the TDMA technique for LEO satellites requires satellite radio beacons (or pilot tones) to perform TDMA scheduling. Any satellite payloads, which require space radio beacon systems, will increase the SWAP requirements. In this opportunity the Air Force is soliciting innovative R&D advances to enable future technology capabilities in the following aspects: (1) revolutionary design principles using TDMA scheduling without space or satellite radio beacons, (2) robust analysis on satellite fingerprints to search for satellite identification and availability, (3) on/off-board TDMA scheduling to efficiently disseminate schedules to RPA platforms, and (4) TDMA scheduling techniques with and without requiring a priori knowledge of satellite locations. The introduction of this emerging capability onto satellite platforms should have minimal impacts on SWAP requirements and require no a-priori knowledge of satellite locations.

 

References

Nguyen TM: Plenary Paper, SPIE Defense and Security 2013: Sensors and Systems for Space Applications VI, Proceedings of SPIE, Vol. 8385: Baltimore, MD, 2013

Kwan WC, Sieteng S, Chen M: A Novel Spatial TDMA Scheduler for Concurrent Transmit/Receive Wireless Mesh Networks, 24th IEEE International Conference on Advanced Information Networking and Applications: 2010

 

Keywords:
Satellite radio beacons; Feature extraction and inference; Satellite fingerprints; Spoofing and jamming; TDMA scheduling; Sparse observations; SWAP;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral and Senior applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.