The National Academies Logo
Research Associateship Programs
Fellowships Office
Policy and Global Affairs

Participating Agencies - AFRL

  Sign InPrintable View

Opportunity at Air Force Research Laboratory (AFRL)

Advanced Digital Receiver/Aperture Development

Location

Sensors Directorate, RY/Electromagnetics Technology Division

RO# Location
13.35.01.B4960 Wright-Patterson AFB, OH 454337542

Advisers

Name E-mail Phone
Mumford, Philip D. philip.mumford@us.af.mil 937.713.4042

Description

Our ultimate goal is to realize fully digital multifunction active arrays with programmable functionality. In this architecture, only the high power and low noise amplifiers at the aperture are analog circuits. Wide-bandgap semiconductors are candidates for these high-power and linear amplifiers. All the amplitude and phase-shifting functions, as well as the beam-forming, are done digitally. Transmit waveforms are generated by direct digital synthesizers and the received signals are captured with very high-speed analog-to-digital converters with deep dynamic range and wide frequency response. True time delay for steering very large wideband agile arrays is also digitally implemented. This architecture requires very high-speed, high-throughput data processing. Commercial simulation tools can facilitate the design of the array aperture and radiators, as well as the components used in the active phased array. Behavioral simulation methodology allows performance prediction of experimental components used in the architecture. Affordability, size, and power consumption are important factors to include in the trade space, but may be considered secondary to advanced performance capabilities. Military RF sensors must operate in extremely dense signal environments (including intentional, unintentional, and co-channel interfering signals). UHF and VHF radars for Foliage Penetration and ground penetration are especially vulnerable because of the dense array of commercial emitters, limited aperture spatial discrimination, wide instantaneous bandwidths, and long integration times required.  Research in all areas of RF system design mentioned above is sought.

 

Keywords:
Microelectronics; Microwave antennas; Microwave electronics; Solid-state electronics;

Eligibility

Citizenship:  Open to U.S. citizens
Level:  Open to Postdoctoral and Senior applicants
Copyright © 2014. National Academy of Sciences. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001.
Terms of Use and Privacy Statement.